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Aarhus, Aarhus, Denmark 
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Abstract. It is shown that the use of the finite-element method with Lagrange multipliers 
in scattering theory is equivalent to the Kohn variational principle. For simple test 
problems, the convergence of the reactance matrix is found to agree with the predicted 
behaviour, that is, the error in KZi is proportional to the square of the error of the Lagrange 
multiplier. 

1. Introduction 

In recent years there has been some interest in the application of the finite-element 
method (FEM) to solve scattering problems, see e.g. Shore (1974), Nordholm and 
Bacskay (1978) or Hendry (1979). The underlying variational principle for FEM 
requires the boundary conditions to be in the form 

au(Rl)+6-l du = O  
dr r=R1 

where a and 6 are constants and R1 is the matching point. This is the form of the 
boundary conditions in the R-matrix method, and it is thus natural to use FEM to 
solve the eigenvalue equations in the R-matrix method, as has been done by Shore 
(1974). 

Hendry and Hennell (1977, 1978) modified the Kohn variational principle by 
adding surface terms to the variational principle, to allow different basis elements to 
be used in each subregion, which greatly improves the convergence. However, they 
have to consider the whole space, forcing them to cope with long-range free-free 
integrals. Further, in order to obtain a Kohn corrected result for the scattering matrix, 
they need to perform further integrals. 

The present method incorporates features from both the above approaches. As 
in R-matrix theory the space is divided into an outer region where the solution is 
known and an inner region where it is not. In contrast to the R -matrix method, which 
solves an eigenvalue problem, here the equations on the inner region are solved using 
the finite-element method with Lagrangian multipliers (FEML) described by Babuska 
(1973). When the dimension of the equations is 2 or more (Pitkaranta 1980a, b), 
detailed error analyses are available, and the K matrix is expected to converge to the 
optimal value, limited in accuracy only by the accuracy of the asymptotic solution. 
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The formulation is presented in detail in $ 2, where the connection to the Kohn 
variational principle is shown. 

The goal of this project is to solve the partial differential equations obtained by 
projecting out the angular part of the Schrodinger equation for the scattering of 
electrons on hydrogenic systems. In order to test the ability of FEML to handle 
scattering problems, the method was applied to simple one-dimensional potential 
scattering; this work is described in § 3. Some concluding remarks are in 9 4. As 
results for only ordinary differential equations (ODE’S) are presented we restrict the 
theory to the one-dimensional case. The generalisation will be presented along with 
results in a subsequent paper. 

2. Theory 

2.1. The scattering problem 

The close-coupling equations for the scattering of an electron on a one-electron target 
can be written as 

1 = nlli2LM I , ]  = 1 , .  . . .Nr  k = l , .  . , N I  ( 2 . l a )  

subject to the boundary conditions 

$zk (0) = 0 (2.16) 

(2 . lc)  

where K , ( r )  is the potential, N1 is the number of open channels ( E ,  = k :  > O), NT the 
total number of channels and 

k ;’/’ ( S l k  sin T I  +K,k COS 77,) 1 = l , .  . . , NI 
I = N I + l , .  . . , NT h i r ) + {  k;’” exp (-lk,lr)Klk 

v 1  = k,r - i1,II + CT, 
is the phase. 

Let us define the outer region I1 by the requirement that the potential Vl,(r) can 
be expanded in powers of r-’. A program to obtain solutions F,, and I(, to (2.la) in 
region I1 subject to asymptotic boundary conditions 

and 

E ,  > o  
/kilr) E j < O  

Iii(r)-+Sijk~l’z 

has been written by Norcross (1969). Therefore the original problem is reduced to 
solving ( 2 . 1 ~ )  on I, the inner region, subject to boundary conditions (2.16) at r = 0 and 

at r = RI. 
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2.2. Kohn 's variational principle ( K v P )  

Let the solution +bij(r) to (2.la,  b)  be composed of two different functions uij(r) and 
vij(r) such that 

vij(r) r S R 1  
uij(r.) r 3 R I '  

*ij = { 
A possible way to generalise KVP for this type of wavefunction is, as pointed out by 
Oberoi and Nesbet (1973), to introduce Lagrange multipliers. Their argument, needed 
in a variational derivation of the R-matrix method, is briefly addressed below. 

Consider the functional E:!, = +(E,,, + En,), where E,, is defined as 

E m ,  =E j $pm(r)Hpq$qn dr -2  C (U(rl)pm-u(rl)pm)Apn (2.2) 
P4 

Hp4 = (d2/dr2 + kE)Sp, - Vp, 

and A,, is a Lagrange multiplier introduced to assure continuity across R1. As the 
first derivative of +bij may be discontinuous, the integral over the first term of Hp4 reads 

-(Vpm (R l b b n  (R 1) - u p ,  (R d.6 (RI)). 

On using this and the symmetry of K,, we obtain for small variations of (EkL-Kmn) 

+E Sopm (Rl)(Apn - D i n  (RI)) - E SUpm (RI)(Apn - ubn (RI))  

+( m t* n ) + O(SA + + &VI$). (2.3) 

P P 

Choosing up, to be the exact solution in the outer region and taking A,, = uLn(R1), 
we find the following set of equations must be satisfied for all p in order to obtain a 
stationary point for Sk!,-Kmn: 

(2.4) 

It is easily seen that E:', vanishes at the stationary point which implies that K,, is 
stationary. 

Sub,(V,,(ri)-upn(ri)) = O .  

2.3, Finite-element method including Lagrange multipliers (FEML) 

The aim here is to show that Kohn's variational principle as formulated in the previous 
section arises in a natural way in FEML. If the coefficients Kjk in (2.ld) were known, 
FEML, as formulated by Babuska (1973), could be applied directly. For the moment 
assume Kjk to be known and call the boundary function g(s) where s is either R1 or 
Ro. Babuska's results, specialised for ODE'S, would then read as follows. 
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The weak solutions wi to 

(9 + k’) Uik (r) = vjvjk (r) r E [Ro, RiI 

U i k  (r) = g i k  (r) 

create a stationary point for 

i 

for r = R o ,  R 1  

where 

The above is a trivial result of Green’s theorem, while the main point of Babuska’s 
work is to show that the converse is true for certain classes of functions, especially 
for Hermite cubics (to be defined later). In these cases, the stationary point ( C i ,  x i )  
satisfies 

k:k’ - 
c i k  + wik, x;k’-*l dx R~ , - 

as M + 00, where M is the size of the basis set (e.g., twice the number of mesh intervals 
in the Hermite cubic representation discussed below). The Lagrange multiplier A i k  
introduced to assure correct boundary behaviour does, in general, depend on the 
matching point. 

For simplicity we assume the trial solutions to be exact at Ro. In this case the 
term containing the Lagrange multiplier A. disappears and the treatment is equivalent 
to the normal finite-element method. A treatment at Ro similar to the one introduced 
below for R 1  will be discussed in example 3 .  The functional (2 .5 )  now reads 

We can make use of the known functional behaviour of U i k  (and dvik/dr) in the 
asymptotic region to expand A i k  in such a way that the variational coefficients are 
independent of R 1 .  If the function had continuous first derivatives at R I ,  we would 
have 

where Sii, Cii are the asymptotic functions. As we can assume the first derivative to 
be known it seems natural to try for A fk  the form (see @.Id) )  

As will be demonstrated in example 3 ,  ajk is nearly independent of R I .  
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In order to give up the assumption that Kik is known, we have to introduce N 
additional conditions, for each k. From (2.4) we see that with the choice 

ajk = Kjj 

the variational principle is identical to Kohn's variational principle. The importance 
of this link is that an error analysis is availab1,e for FEML, which assures convergence 
(at least in a statistical sense as is seen in example 3, figure 4(a, 6)). 

Another possible application of FEML is in connection with the variable phase 
method of Le Dourneuf and Vo Ky Lan (1977). As this is the subject of a subsequent 
paper, the method is only briefly outlined. The functions F and I in (2.ld) are now 
solutions of the asymptotic equations leading to an r-dependent K-matrix k(r). 
Through the matching between the interior and exterior regions we obtain an initial 
value for k which is to be integrated outwards until it becomes constant ( i j j ( 0 o )  = Kij). 
In practice the trial function for A :k has to be changed to 

where Kij and dKij/dr are variational parameters. 

3. Numerical examples 

After we have introduced the basis elements we consider three numerical examples, 
the first two being 'standard' test problems for variational methods. In the first example 
we see that the resonance behaviour is reproduced well. The second example is 
included mainly because of the number of papers devoted to this problem, but also 
because R1 is well defined and a unique relation exists between step size and number 
of elements. The third problem has more in common with a realistic scattering 
problem, in particular the r-2 singularity which allows us to test different ways of 
treating the inner boundary. 

3.1. Basis elements 

As basis functions we will use the Hermite cubics (see Strang and Fix 1973) defined 
as follows. Let the region [0, R1] be covered by a mesh XI, x2, . . . , x N  and define the 
basis functions {& (x), wi (x)} as piecewise third-order polynomials which are non-zero 
only on ] x i - l ,  xjtl[ and which satisfy 

$i (xn 1 = Sin,  !q = o  oi (xn) = 0, *I = ain. (3.1) dx x=xn  dx x=xn 

(The use of the symbol qbi for one of the basis functions is standard in finite-element 
theory. As it is always clear whether a basis function or a wavefunction is in question, 
we will keep this notation.) Using the same mesh for all channels, we can write the 
channel function Djk as 
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The advantages of using Hermite cubics are that they are very compact, being 
non-zero over only two intervals (leading to a narrow banded matrix); they exhibit 
the minimum continuity for a solution to a second-order differential equation, namely 
C'; and finally they seem to interpolate bound, as well as free wavefunctions very 
well. From the error analysis by Babuska (1973)  we would expect the solution to 
converge as h4, and the first derivative as h3,  where h is the step size. As an estimate 
of the error in the Lagrange multiplier, we can use the discontinuity in the first 
derivative at R1. From ( 2 . 3 )  we see that the expected convergence rate for K is h6.  

3.2. The Bethe-Bacher (1936) model problem 

Choosing NT= 1 and V l l ( r )  = 2 e-' we are left with the problem 

(d2/dr2 - 2 e-r + k 2 ) u  = 0 

u ( 0 )  = 0 

u(R1) =sin(kR')+K11 cos(kRI) 

which has the exact solution (in the limit R1 + CO) 

K;: = -Im(Q)/Re(Q) 
where 

(3 .3 )  

J being a Bessel function. It is well known (see e.g. Truhlar et a1 1974) that the 
above problem exhibits pseudoresonances when the Kohn or Rubinov variational 
methods are used in the energy range [ 0 . 1 , 1 ]  (Ryd). The solution Kll, the relative 
error (Kll -K;; ) /Kf'I  and the determinant are shown in figure 1 ,  and it is seen that 
no pseudoresonances occur. The true resonance is reproduced reasonably well, with 
the energy of the resonance in error by -0.00002 Ryd. 

In order to test the convergence a variety of values for N and RI was chosen. A 
typical curve of the error of the K-matrix as a function of the step size is shown in 
figure 2.  The slope of the line is 5 .2 ,  somewhat less than the expected value of 6 .  As 
expected, when RI is too small the converged value of K is erroneous. Truhlar et a1 
(1974) also give detailed Kohn-principle results for k 2  = 0 .55 ,  obtaining much better 
convergence rates than found here; however the occurrence of pseudoresonances 
makes their method doubtful at arbitrary energies. 

3.3. Huck (1957) model 

Here we have 

leading to the coupled equations 

r < l  
(-$+ki).ir=(p r > l  (3 .4 )  
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Figure 1. Bethe-Bacher model: ---, Kll;  -, log (relative error of IC1,); . . 1 deter- 
minant of matrix to be inverted. 

described in detail by Huck (1957). For C 2  = 10 the error curve which is plotted in 
figure 3 as a function of step size shows a slope a = 5.8. Because of the well defined 
values of the domain, instc Ad of the step size we can use the total number of basis 
functions as the x axis. NE bet’s (1969, 1978) results using the OAF method are also 
shown. Recent results by Rudge (1980) using a consistent Kohn method are consider- 
ably better than those obtained here, although, in comparing the two methods, it 
should be noted that a nonlinear parameter had to be determined before the variation 
procedure was performed. 

3.4. Seaton model 

We obtain the Seaton model (Seaton 1961) choosing 

Vi = A/r2,  vi = I(/ + 1)/r2, N r =  2 

and assuming the same energy in both channels, i.e. we get 

(d2/dr2 - l (E+ l ) / r 2 +  k2)uik = (A/r2)ujk. (3.5) 
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Log I step 1 

Figure 2. Bethe-Bacher model. Log (relative error in KI1) as a function of step size for 
RI = : 10, (0); 15, (+); 20, (A) and 25, (0). The slope of the plotted line is 5.4. 

-Log I s t e p  ) 
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01 I I I I ! -7 

- -2c o i  
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-7 

6 0 10 15 20 25 
N 

Figure 3. Huck model with C 2  = 10: (0). OAF result of Nesbet (1978); (+), present elastic 
(inelastic) results. The rate of convergence is 5.8. 

The exact solution can be written as 
K -1 

21 - 2(K+ - K - )  K -1 
11 - 2(K++K-) 

where K ,  is defined as 

K ,  = tan II$r{2l+ 1 - [ (2 l+ 1 ) 2  f 4A]”’}]. 
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It is easily seen that exterior solutions Si j ( r ) ,  Cii(r) can be constructed from Jr++1/2, 

J r - + 1 1 2 ,  Yr++l/2 and Yer-+1/2 where 

p*:=  -0.5+[(I+$)2*A]1’2. 

It is the singularity at r = 0 which makes this model interesting. There are two ways 
of treating this singularity: one is to impose zero boundary conditions at some small 
value R,; the other is to use Lagrange multipliers as is done at R l .  Inserting a power 
expansion in (3.3) and using the regularity at zero we obtain a series solution for ui(r)  
of the form 

ui ( r )  = Aorql ( !o ujri) * BorqZ (E bid) (3.6) 

where ai and bj are known coefficients. Proceeding as at R1 we can write the Lagrange 
multiplier as 

A third approach is used only for comparison, that is to impose the exact boundary 
condition at Ro. 

The error in the K matrix, the L2 error of the wavefunction and the discontinuity 
of the first derivative at R1 for 1 = 1, A = 1.50 and R1 = 10 are shown in figure 4(a) 
for three different values of Ro. The discontinuity of the first derivative approximates 
the error in the Lagrange multiplier, and it is seen from figure 4(a) that, as expected, 
the rate of convergence of the K matrix equals the square of the rate of convergence 
of the Lagrange multiplier. In figure 4 ( b )  are shown the relative error of Kit and the 
Lz error of uil for 1 = 1, A = 1.5, R1 = 10 and N = 20 as continuous functions of Ro. 
We see that the lack of convergence observed in figure 4(a) for Ro = lo-’ is associated 
with the general increase in the error for small R0. The size of the increase A = error 
(Ro = 10-4)-error (Ro = 1) can be related to the behaviour of the solution at r = 0 as 
follows. When the first derivative is singular A is fairly large and the convergence for 
small Ro therefore poor, whereas A is somewhat smaller when the first derivative is 
regular but the second derivative is singular. In realistic scattering problems, where 
the solution behaves as rft l ,  we expect A to vanish, and therefore the results obtained 
by imposing zero boundary conditions at Ro should converge. When the exact value 
is imposed at Ro, the error oscillates around zero implying that the logarithm of the 
error approaches minus infinity giving rise to the dominant structure in figure 4(b). 
The same feature is observed for Ro = 0.1 as N is increased (figure 4(a)). 

The procedure is fairly insensitive to the zeros of the outer matching functions, 
as is seen from figure 5 ,  where the error for Ro = 0.5 is shown as a function of R1. 
The only appreciable effect is found in K21, where a correlation between zeros of 
S(x)  and C(x)  and extrema in the error of K21 is found. 

The convergence for higher I was better than for 1 = 1 in the sense that, over a 
wide range of A values, one could come very close (<lo-”) to the singularity without 
any levelling off of the error curve. In particular, this means that one can impose 
zero boundary conditions at Ro and obtain results indistinguishable from those 
obtained imposing the exact boundary conditions or obtained using Lagrange multi- 
pliers near the origin. 
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R,  I 10-5 R,  I 0.1 R ,  = 0 . 5  

Figure 4(a). Seaton model as a function of step size with 1 = 1, A = 1.5, R I  = 10 for three 
different values of Ro. The L2 error (-.  -) and the discontinuity of the first derivative at 
RI(-  x -), shown on the upper part of the figure, are independent of the treatment of Ro 
(zero boundary condition only imposed for Ro = lo-')), therefore only one curve is shown. 
The lower of the two discontinuity curves corresponds to the inelastic channel, as is also 
the case for the error in the K matrix shown on the lower part of the figure. Imposing 
exact boundary conditions at Ro (A) and using Lagrange multipliers (0) yield nearly 
identical results for the K matrix for Ro = only one curve is shown. The slopes are  
approximately: 3 (discontinuity); 4 ( L ,  error) and 5.6 (error in K matrix). 

4. Conclusion 

Calculations of the reactance matrix for simple potential scattering problems using 
FEML yield very encouraging results. The result for a given problem is rather dependent 
on parameters such as the accuracy of the basis functions at the matching point 
(figure 2), and treatment of inner boundary (figure 4(6)). Nevertheless, we are sure, 
for a given set of parameters, to obtain good convergence when the mesh is refined, 
in the sense that although the error may oscillate around zero its amplitude will 
decrease as ha ,  a = 6 .  

Two different ways of treating the singular region were tried. In the test case here 
the Lagrange multiplier method was superior. Since the lack of convergence for zero 
boundary conditions results from the irregularity of the second and third derivatives, 
one may expect this method to work for realistic scattering problems. 

There are two important features of the method. First it combines a well-estab- 
lished numerical method with a variational method, resulting in an increase in the 
rate of convergence for the scattering matrix. Because of the link to FEML we can be 
sure that the method will converge. Second, one is allowed to treat the asymptotic 
region separately. 
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10- 1 0 - 2  10-1 1 

Ro 

Figure 4(b). Seaton model as a function of Ro with I = 1, A = 1.5, R I =  10 and N = 20. 
The symbols are the same as in figure 4(a).  (0) indicate results obtained on imposing 
zero boundary conditions at Ro. 
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At the moment the generalisation of the procedure to two dimensions is under 
way. It should however be noted that one can also apply this procedure to the 
close-coupling method; the advantage of the present method being that the integral 
operator can be included directly instead of being treated by means of an extra 
equation, as in the non-iterative treatment of C-C equations. 
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